Supplemental Midterm - Differential Equations (2018-19)

Time: 2.5 hours. Attempt all questions.

1. Let $F: \mathbf{R} \times \mathbf{R}^d \to \mathbf{R}^d$ be a continuous function (we do not assume any Lipschitz condition on F). Assume that $|F(t,\mathbf{x})| \leq M$ when $|\mathbf{x} - \mathbf{c}| \leq K$ and $|t - a| \leq T$. Show that there exists a solution $u: I \to \mathbf{R}^d$ to the differential equation $\partial_t u = F(t,u)$ with $u(a) = \mathbf{c}$, where $I: [a-T_1, a+T_1]$ and $T_1 = \min(T, K/M)$.

(Hint: Without loss of generality assume that a=0 and consider the sequence of functions $u^{(n)}$ given by $u^{(n)}(t) \equiv \mathbf{c}$ for $0 \le t \le T_1/n$ and $u^{(n)}(t) = \mathbf{c} + \int_0^{t-T_1/n} F(s, u^{(n)}(s))$ for $T_1/n < t \le T_1$. Use the Arzela-Ascoli theorem. The theorem is recalled below.) [8 marks]

- 2. Find the general solution of u'' 2xu' + 3u = 0. [5 marks]
- 3. Find the general solution of the system

$$\frac{dx}{dt} = 5x + 4y, \quad \frac{dy}{dt} = -x + y.$$
 [5 marks]

- 4. Let $q: \mathbf{R} \to \mathbf{R}$ be a continuously differentiable function such that q(x) < 0 for all x. If u is a nontrivial solution of u'' + q(x)u = 0, then show that u has at most one zero. [4 marks]
- 5. Prove that the critical point (0,0) of the system dx/dt = F(x,y), dy/dt = G(x,y) is unstable if there exists a function E(x,y) with the following properties: [4 marks]
 - (a) E(x,y) is continuous and has continuous first partial derivatives in some region containing the origin.
 - (b) E(0,0) = 0.
 - (c) every circle centered on (0,0) contains at least one point where E(x,y) is positive.
 - (d) $(\partial E/\partial x)F + (\partial E/\partial y)G$ is positive definite.
- 6. Find the general solution of $u'' + 2u' + 2u = e^{-x}$. [4 marks]

Recall:

Arzela Ascoli Theorem: Consider a sequence of real-valued continuous functions $\{f_n\}$ defined on [a,b]. If this sequence is uniformly bounded and equicontinuous, then there is a uniformly convergent subsequence.

We say f_n is uniformly bounded if there is a M > 0 such that $|f_n(x)| \leq M$ for all n and x.

We say f_n is equicontinuous when for every $\epsilon > 0$ there is a $\delta > 0$, such that $|x - y| < \delta$ implies $|f_n(x) - f_n(y)| < \epsilon$ for all n.

We say f_n is uniformly convergent to f if $\sup_{x \in [a,b]} |f_n(x) - f(x)| \to 0$.